Stopping and storing light coherently
نویسندگان
چکیده
We present a general analysis for the criteria to stop and store light coherently. We show that a light pulse can be stopped in any physical system, provided that (i) the system bandwidth can be compressed to zero; (ii) the system has sufficient degrees of freedom to accommodate the pulse, and the bandwidth compression occurs while the pulse is in the system; and (iii) the bandwidth compression is done reversibly in an adiabatic fashion that preserves the phase space and the information in the original photon pulse during the entire duration of the stopping process. Based upon this general criterion, we present a brief discussion of stopping-light schemes using atomic resonances, and a detailed analysis of the all-optical scheme that we recently proposed. We show that the all-optical scheme can achieve arbitrarily small group velocities for large bandwidth pulses, and opens up new opportunities in both fundamental sciences and technological applications.
منابع مشابه
Slow Light in Nanophotonic Materials From ‘Trapped Rainbows’ to Quantum Memories
We analyze and compare the salient features of slowlight propagation in a variety of nanophotonic structures, including metamaterial, plasmonic and photonic crystal waveguides. We discuss the possibility of stopping light in nanoplasmonic metamaterials, and coherently storing quantum information in semiconductor quantum dot ensembles. Keywords––slow light; metamaterals; plasmonics; photonic cry...
متن کاملSlowing and stopping light with an optomechanical crystal array
The ability to coherently store and retrieve optical information in a rapidly tunable manner is an important ingredient for all-optical information processing. In the classical domain, this optical buffering is necessary to manage information flow in complex networks. In quantum information processing, such a system can also serve as a long-term memory capable of storing the full quantum inform...
متن کاملStopping light all optically.
We show that light pulses can be stopped and stored coherently, with an all-optical adiabatic and reversible pulse bandwidth compression process. Such a process overcomes the fundamental bandwidth-delay constraint in optics and can generate arbitrarily small group velocities for any light pulse with a given bandwidth, without any coherent or resonant light-matter interactions. We exhibit this p...
متن کاملSlowing and stopping light using an optomechanical crystal array
One of the major advances needed to realize all-optical information processing of light is the ability to delay or coherently store and retrieve optical information in a rapidly tunable manner. In the classical domain, this optical buffering is expected to be a key ingredient of managing the flow of information over complex optical networks. Such a system also has profound implications for quan...
متن کاملEnergy-time entanglement preservation in plasmon-assisted light transmission.
We report on experimental evidence of the preservation of the energy-time entanglement of a pair of photons after a photon-plasmon-photon conversion. This preservation is observed in two different plasmon conversion experiments, namely, extraordinary optical transmission through subwavelength metallic hole arrays and long range surface plasmon propagation in metallic waveguides. Plasmons are sh...
متن کامل